Dynamic Programming (Chapter 6)

Algorithm Design Techniques

Greedy
Divide and Conquer
Dynamic Programming
Network Flows

Algorithm Design

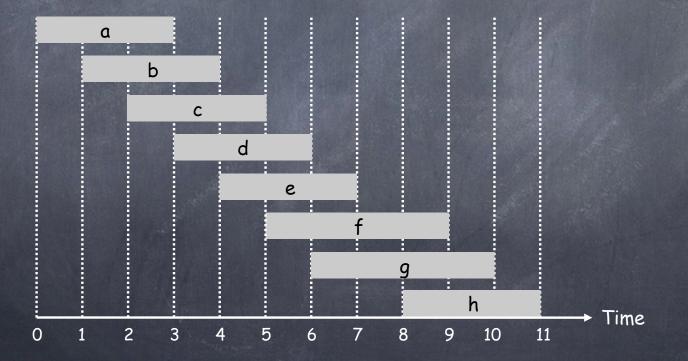
	Greedy	Divide and Conquer	Dynamic Programming
Formulate problem	?	?	?
Design algorithm	less work	more work	more work
Prove correctness	more work	less work	less work
Analyze running time	less work	more work	less work

Dynamic Programming "Recipe"

- Recursive formulation of optimal solution in terms of subproblems
- Obvious implementation requires solving exponentially many subproblems
- Careful implementation to solve only polynomially many different subproblems

Interval Scheduling (Yes, this is an old problem!)

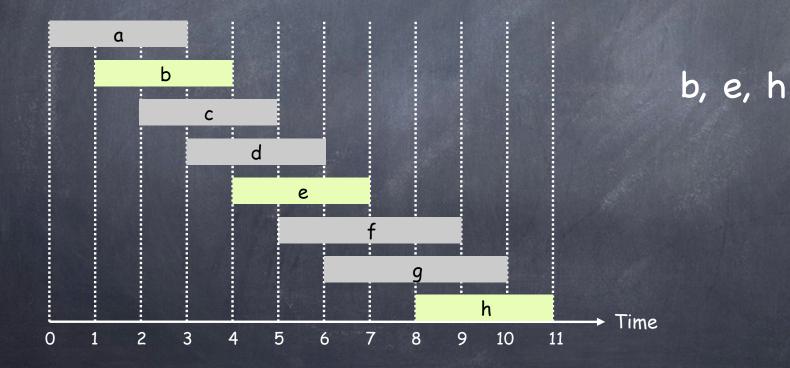
Job j starts at s_j and finishes at f_j.
 Two jobs compatible if they don't overlap.
 Goal: find maximum subset of mutually compatible jobs.



Interval Scheduling: Greedy Solution

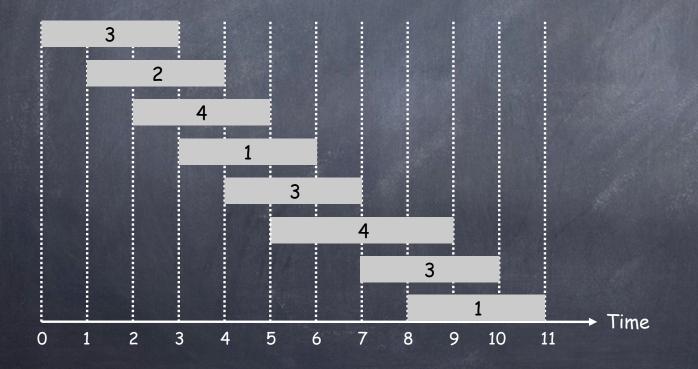
Sort jobs by earliest finish time.

Take each job provided it's compatible with the ones already taken.



Weighted Interval Scheduling

Job j starts at s_j, finishes at f_j, and has weight v_j.
Two jobs compatible if they don't overlap.
Goal: find maximum weight subset of mutually compatible jobs.



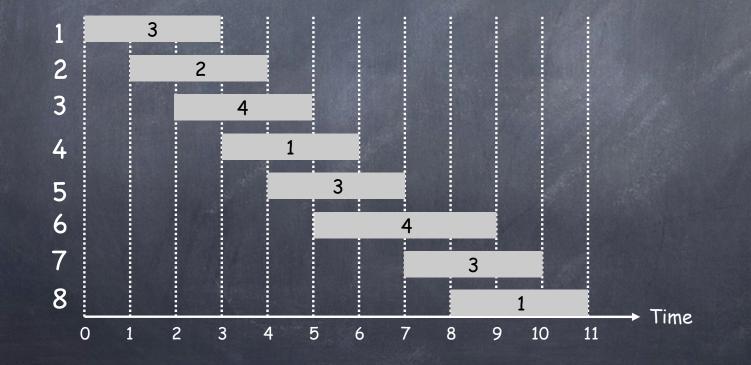
Greedy Solution?

Observation. Greedy algorithm can be arbitrarily bad when intervals are weighted.



Weighted Interval Scheduling

- p(j) = largest index i < j such that job i is compatible with j.
- \odot E.g.: p(8) = 5, p(7) = 5, p(2) = 0.

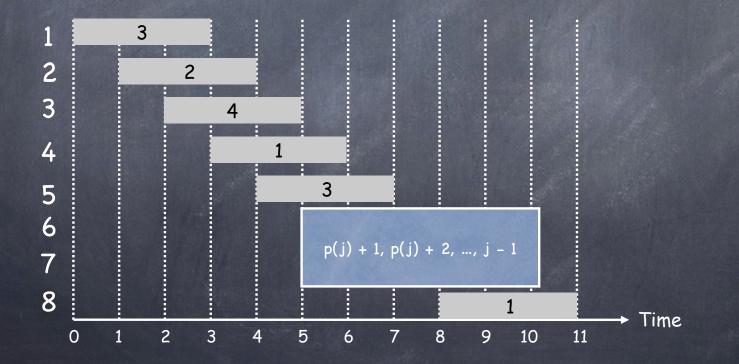


Dynamic Programming: Binary Choice

OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.
 Case 1: OPT selects job j.
 Case 2: OPT does not select job j.

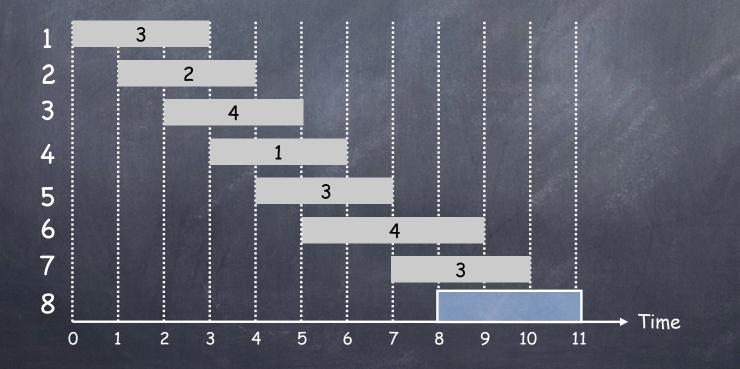
If OPT selects job j...

can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)



If OPT does not select job j...

 must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1



Optimal Substructure

OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j
Case 1: OPT selects job j
Case 2: OPT does not select job j

Recurrence for OPT(j)

Straightforward Recursive Algorithm

Sort jobs by finish time: $f_1 \leq f_2 \leq ... \leq f_n$. Compute p(1), p(2), ..., p(n) Compute-Opt(j) { if (j = 0)return O else return max(v_i + Compute-Opt(p(j)), Compute-Opt(j-1)) } **Running time?**

Worst Case Running Time

5

4

(1)

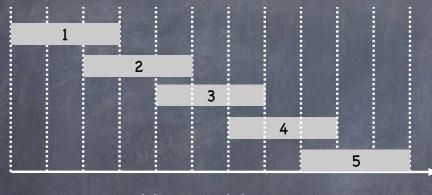
2

2

 \bigcirc

3

2



p(1) = 0, p(j) = j-2

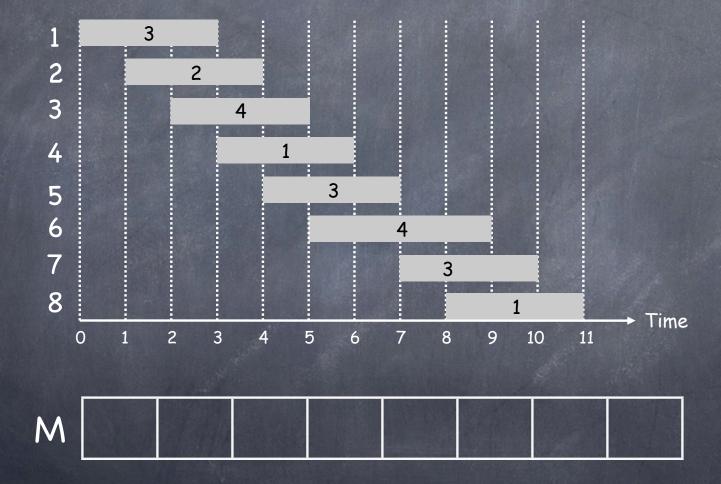
Worst-case is exponential How can we do better?

Memoization. Store results of each sub-problem in an array; lookup as needed.

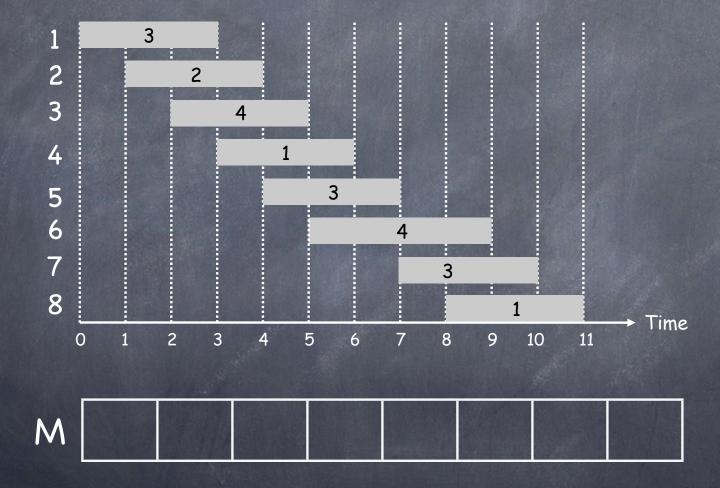
Sort jobs by finish times so that $f_1 \le f_2 \le ... \le f_n$. Compute p(1), p(2), ..., p(n)

for j = 1 to n M[j] = empty M[0] = 0

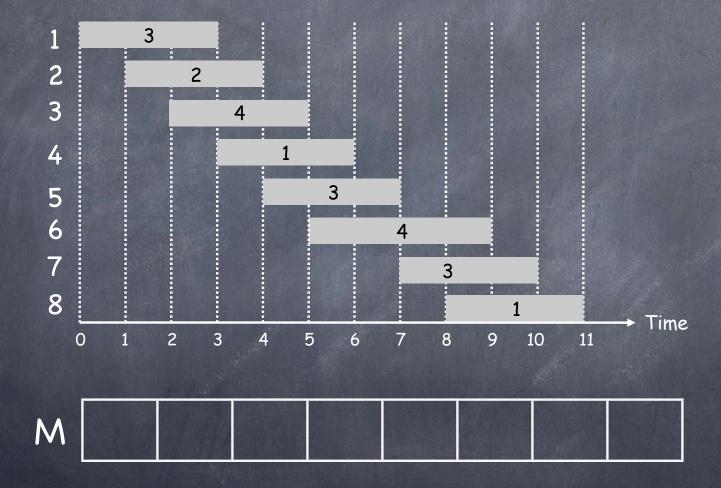
M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(w_j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
}



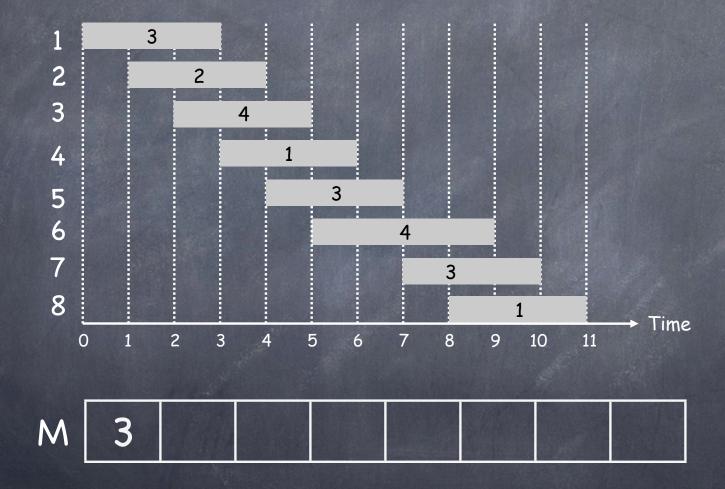
M[8] = max(1 + M-Compute-Opt(5), M-Compute-Opt(7)



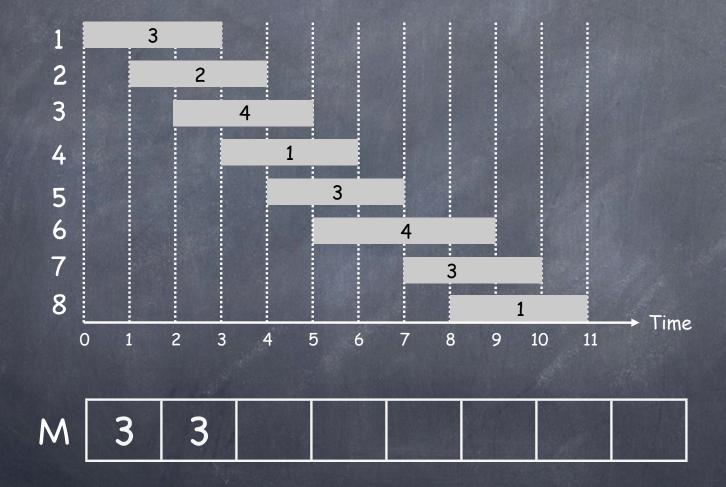
M[5] = max(3 + M-Compute-Opt(2), M-Compute-Opt(4)



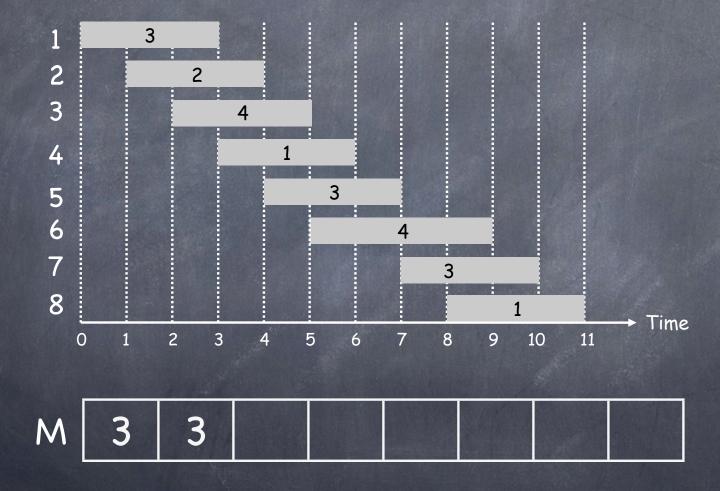
M[2] = max(2 + 0, M-Compute-Opt(1))



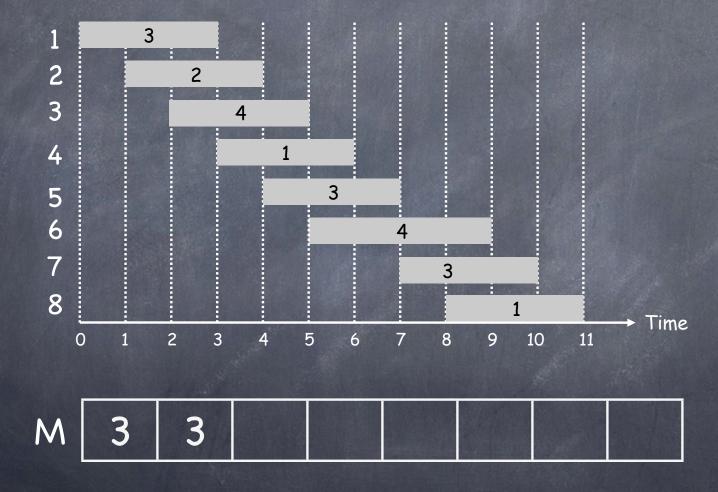
M[1] = max(3 + 0, 0)



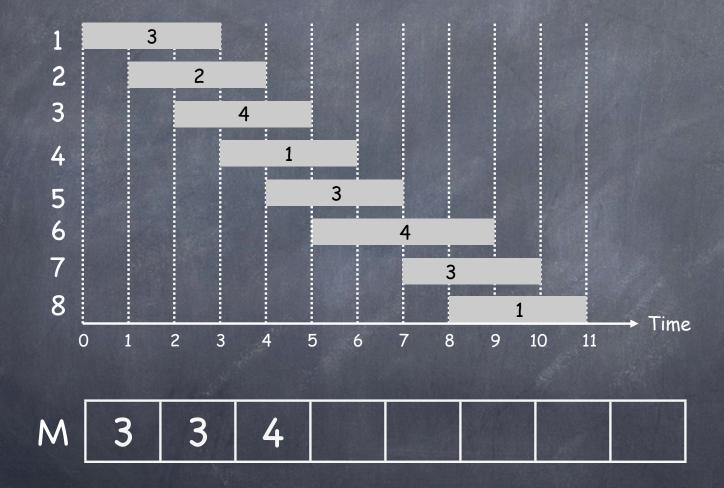
M[2] = max(2 + 0, 3)



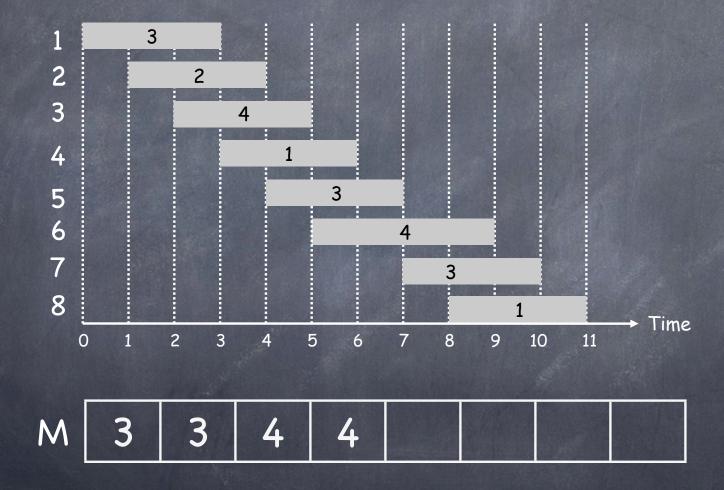
M[5] = max(3 + 3, M-Compute-Opt(4))



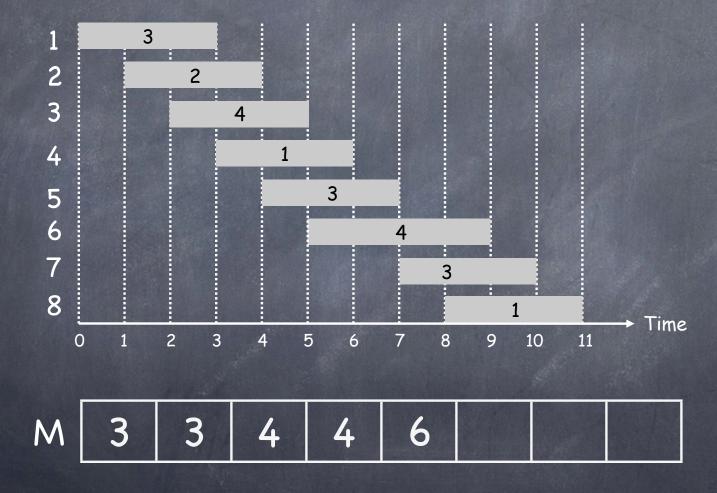
M[4] = max(1 + 3, M-Compute-Opt(3))



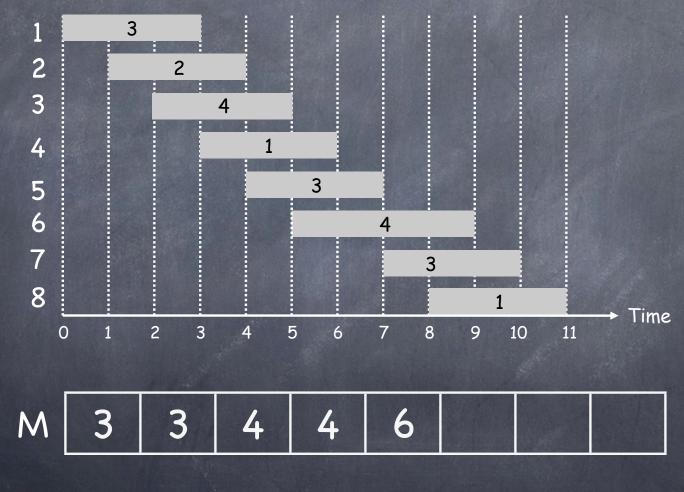
M[3] = max(4 + 0, 3)



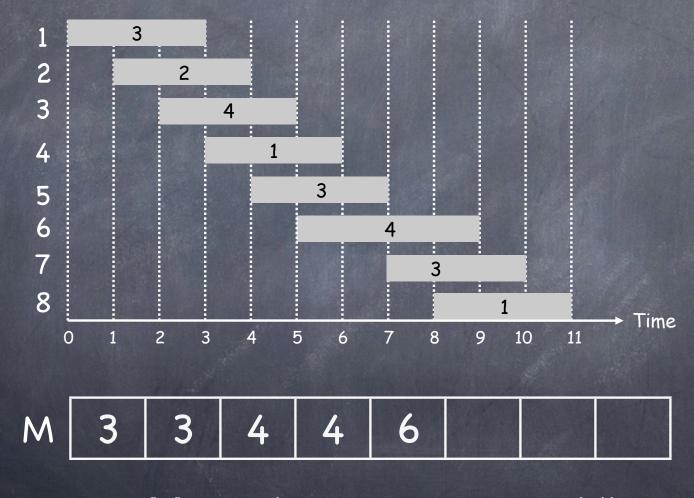
M[4] = max(1 + 3, 4)



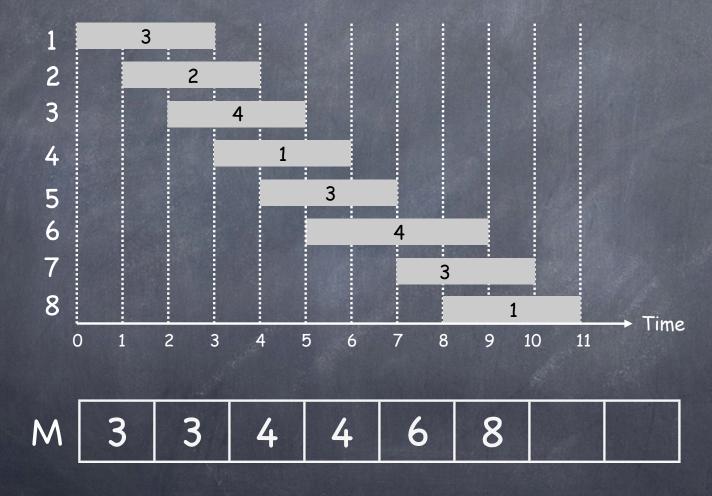
M[5] = max(3 + 3, 4)



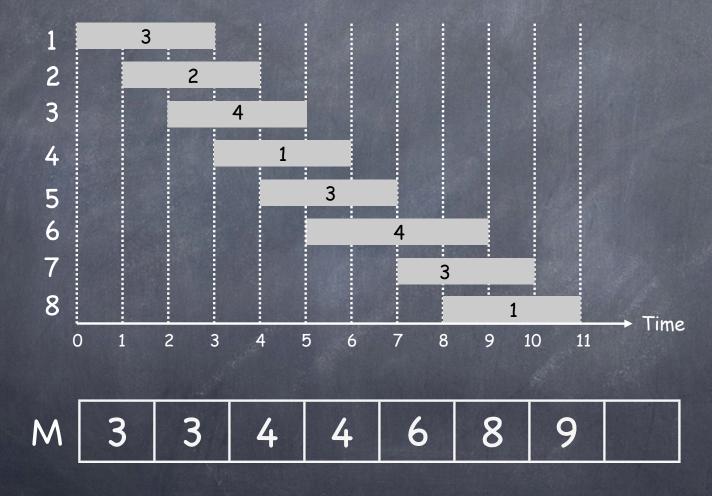
M[8] = max(1 + 6, M-Compute-Opt(7))



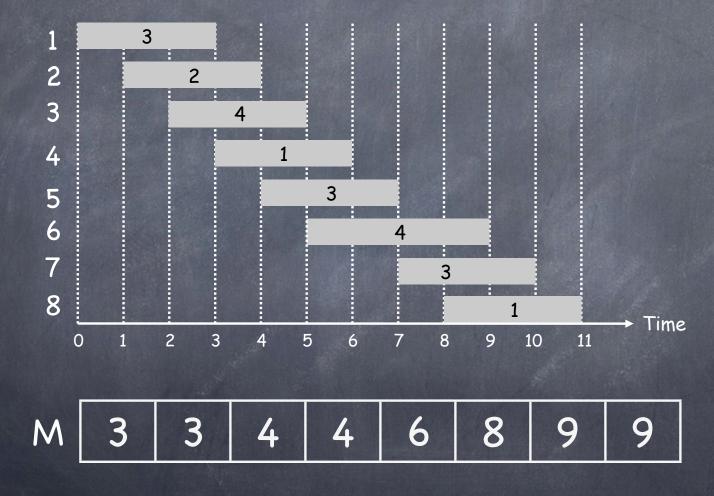
M[7] = max(3 + 6, M-Compute-Opt(6))



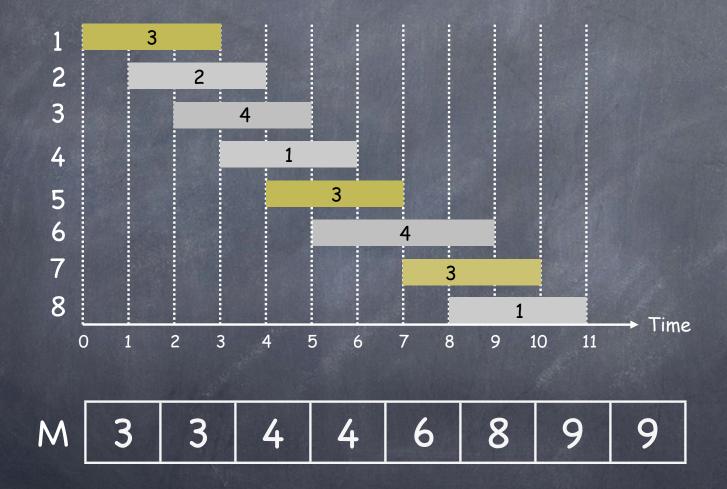
M[6] = max(4 + 4, 6)



M[7] = max(3 + 6, 8)



M[8] = max(1 + 6, 9)



Running Time?

Sort jobs by finish times so that $f_1 \le f_2 \le ... \le f_n$. Compute p(1), p(2), ..., p(n)

```
for j = 1 to n
M[j] = empty
M[0] = 0
```

}

```
M-Compute-Opt(j) {
if (M[j] is empty)
M[j] = max(w<sub>j</sub> + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]
```

Iterative Solution

Bottom-up dynamic programming. Solve subproblems in ascending order.

Sort jobs by finish time: f₁ ≤ f₂ ≤ ... ≤ f_n. Compute p(1), p(2), ..., p(n) Iterative-Compute-Opt { M[0] = 0 for j = 1 to n M[j] = max(v_j + M[p(j)], M[j-1])

}

Compute the Solution (Not Just Its Value)

Service: Suppose you know the value OPT(j) for all j.

How can you produce the set of intervals in the optimal solution?

Dynamic Programming "Recipe"

- Recursive formulation of optimal solution in terms of subproblems
- Obvious implementation requires solving exponentially many subproblems
- Careful implementation to solve only polynomially many different subproblems