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Algorithm Design

Greedy Divide and 
Conquer

Dynamic
Programming

Formulate problem ? ? ?

Design algorithm less work more work more work

Prove correctness more work less work less work

Analyze running time less work more work less work



Dynamic Programming 
“Recipe”

Recursive formulation of optimal solution in 
terms of subproblems

Obvious implementation requires solving 
exponentially many subproblems

Careful implementation to solve only 
polynomially many different subproblems



Interval Scheduling
(Yes, this is an old problem!)

Job j starts at sj and finishes at fj.
Two jobs compatible if they don't overlap.
Goal: find maximum subset of mutually compatible jobs.
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Interval Scheduling:  Greedy Solution

Sort jobs by earliest finish time.  

Take each job provided it's compatible with the ones 
already taken.
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Weighted Interval Scheduling
Job j starts at sj, finishes at fj, and has weight vj. 
Two jobs compatible if they don't overlap.
Goal: find maximum weight subset of mutually 
compatible jobs.
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Greedy Solution?

Observation. Greedy algorithm can be 
arbitrarily bad when intervals are weighted.
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Weighted Interval Scheduling
Label jobs by finishing time: f1  ≤  f2  ≤ . . . ≤ fn .
p(j) = largest index i < j such that job i is compatible 
with j.
E.g.: p(8) = 5, p(7) = 5, p(2) = 0.
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Dynamic Programming:  
Binary Choice

OPT(j) = value of optimal solution to the problem 
consisting of job requests 1, 2, ..., j.

Case 1:  OPT selects job j.
Case 2:  OPT does not select job j.



If OPT selects job j...
can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., 
j - 1 }
must include optimal solution to problem consisting of 
remaining compatible jobs 1, 2, ...,  p(j)
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If OPT does not select job j...
must include optimal solution to problem 
consisting of remaining compatible jobs 1, 
2, ...,  j-1
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Optimal Substructure

  

� 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
⎧ 
⎨ 
⎩ 

OPT(j) = value of optimal solution to the problem 
consisting of job requests 1, 2, ..., j

Case 1:  OPT selects job j
Case 2:  OPT does not select job j

  Recurrence for OPT(j)

Case 1 Case 2



Sort jobs by finish time: f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
   if (j = 0)
      return 0
   else
      return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Straightforward Recursive Algorithm

Running time?



Worst Case Running Time
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Worst-case is exponential
How can we do better?



Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
   M[j] = empty
M[0] = 0

M-Compute-Opt(j) {
   if (M[j] is empty)
      M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
   return M[j]
}

Memoization
Memoization.  Store results of each sub-problem in 
an array; lookup as needed.



Memoization
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M

M[8] = max(1 + M-Compute-Opt(5), M-Compute-Opt(7)



Memoization

M

M[5] = max(3 + M-Compute-Opt(2), M-Compute-Opt(4)
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Memoization

M

M[2] = max(2 + 0, M-Compute-Opt(1)
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Memoization

3M

M[1] = max(3 + 0, 0)
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Memoization

3 3M

M[2] = max(2 + 0, 3)
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Memoization

3 3M

M[5] = max(3 + 3, M-Compute-Opt(4)
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Memoization

3 3M

M[4] = max(1 + 3, M-Compute-Opt(3)
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Memoization

3 3 4M

M[3] = max(4 + 0, 3)
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Memoization

3 3 4 4M

M[4] = max(1 + 3, 4)
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Memoization

3 3 4 4 6M

M[5] = max(3 + 3, 4)
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Memoization

3 3 4 4 6M

M[8] = max(1 + 6, M-Compute-Opt(7)
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Memoization

3 3 4 4 6M

M[7] = max(3 + 6, M-Compute-Opt(6))
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Memoization

3 3 4 4 6 8M

M[6] = max(4 + 4, 6)
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Memoization

3 3 4 4 6 8 9M

M[7] = max(3 + 6, 8)
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Memoization

3 3 4 4 6 8 9 9M

M[8] = max(1 + 6, 9)
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Memoization

3 3 4 4 6 8 9 9M
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Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
   M[j] = empty
M[0] = 0

M-Compute-Opt(j) {
   if (M[j] is empty)
      M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
   return M[j]
}

Running Time?



Iterative Solution
Bottom-up dynamic programming. Solve 
subproblems in ascending order.

Sort jobs by finish time: f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
   M[0] = 0
   for j = 1 to n
      M[j] = max(vj + M[p(j)], M[j-1])
}



Compute the Solution
(Not Just Its Value)

Exercise: suppose you know the value OPT(j) 
for all j.

How can you produce the set of intervals in 
the optimal solution?



Dynamic Programming 
“Recipe”

Recursive formulation of optimal solution in 
terms of subproblems

Obvious implementation requires solving 
exponentially many subproblems

Careful implementation to solve only 
polynomially many different subproblems


