Dynamic Programming
(Chapter 6)

Algorithm Design
Techniques

@ Greedy
@ Divide and Conquer
@ Dynamic Programming

® Network Flows

Algorithm Design

Divide and | Dynamic
Greedy :
Conquer |Programming
Formulate problem 2 ? ?
Design algorithm less work | more work | more work
Prove correctness more work | less work | less work
Analyze running time | less work [more work | less work

Dynamic Programming
"Recipe”

@ Recursive formulation of optimal solution in
terms of subproblems

@ Obvious implementation requires solving
exponentially many subproblems

@ Careful implementation to solve only
polynomially many different subproblems

Interval Scheduling

(Yes, this is an old problem!)

@ Job j starts at s; and finishes at f;.

® Two jobs compatible if they don't overlap.
® Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Greedy Solution

@ Sort jobs by earliest finish time.

@ Take each job provided it's compatible with the ones
already taken.

b, e, h

Weighted Interval Scheduling

@ Job j starts at s, finishes at f, and has weight v..

® Two jobs compatible if they don't overlap.

@ Goal: find maximum weight subset of mutually
compatible jobs.

Greedy Solution?

@ Observation. Greedy algorithm can be
arbitrarily bad when intervals are weighted.

weight = 999
. weight =1 |

. > Time
0] 1 2 3 4 5 6 4 8 9 10 11

Weighted Interval Scheduling

@ Label jobs by finishing fime: f; < f, <...<f,.

@ p(j) = largest index i < j such that job i is compatible
with J.

® E.qg.: p(8) =5, p(7) = 5, p(2) = 0.

oo Nooul A WD

Dynamic Programming:
Binary Choice

® OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., |.
@ Case 1: OPT selects job .
@ Case 2: OPT does not select job .

If OPT selects job |...

@ can't use incompatible jobs { p(j) + 1, p(j) + 2, ...,
%1

® must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(j)

oo Nooul A WD

If OPT does not select job |..

@ must include optimal solution to problem
consisting of remaining compatible jobs 1,
2ivis, -l

oo Nooul A WD

Optimal Substructure

OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., |

® Case 1: OPT selects job |

® Case 2: OPT does not select job |

Recurrence for OPT(})

if j=0
max { v, + OPT(p(j)), OPT(j—1)} otherwise

{ 0
OPT(j)=

Case 1l Case 2

Straightforward Recursive Algorithm

Sort jobs by finish time: f; < f, < .. < f.

Compute p(1), p(2), ..., p(n)

Compute-0Opt(}) 1
if (j =0)
return O
else
return max(v; + Compute-Opt(p(j)), Compute-Opt(j-1))

Running time?

Worst Case Running Time

p(1) = O, p(j) = j-2

Worst-case is exponenfial
How can we do better?

Memoization

Memoization. Store results of each sub-problem in
an array; lookup as needed.

Sort jobs by finish times so that f; < f, < ... < f.
Compute p(1), p(2), ..., p(n)

for j=1ton
M[j] = empty
M[O] = O

M-Compute-Opt(j) {
if (M[j] is empty)
M[j] = max(w; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]
}

Memouzahon

0O NouUl A WD -~
l

o
—_
n
w
S
ol
o
~
oo
Xo)
o
e

M

M[8] = max(l + M-Compute-Opt(5), M-Compute-Opt(7)

0O NouUl A WD -~

Memouzahon

O AN NN ENEEEEEEEEEEEEEEEEEEEE

._,.
N
w
S
$)
o
~ feaa
oo
\e}
o
=

MI5]

= max(3 + M-Compute-Opt(2), M-Compute-Opt(4)

Memouzahon

0O NouUl A WD -~
l

o
—_
n
w
S
ol
o
~
oo
Xo)
o
e

<

M[2] = max(2 + O, M-Compute-Opt(1)

Memouzahon

0O NouUl A WD -~
l

<
w

M[1] = max(3 + O, 0)

Memouzahon

0O NouUl A WD -~
l

<
w
w

M[2] = max(2 + O, 3)

Memouzahon

0O NouUl A WD -~
l

3

<
w

M[5] = max(3 + 3, M-Compute-Opt(4)

Memouzahon

0O NouUl A WD -~
l

3

<
w

M[4] = max(l + 3, M-Compute-Opt(3)

Memouzahon

0O NouUl A WD -~
l

<
w
w

A

MI[3] = max(4 + O, 3)

Memouzahon

0O NouUl A WD -~
l

<
w
w
S
S

M[4] = max(1 + 3, 4)

Memouzahon

0O NouUl A WD -~
l

4 | 4 | 6

<
w
w

MI[5] = max(3 + 3, 4)

Memouzahon

0O NouUl A WD -~
l

304 a6

<
w

M[8] = max(l + 6, M-Compute-Opt(7)

Memouzahon

0O NouUl A WD -~
l

33 4] a6

<

M[7] = max(3 + 6, M-Compute-Opt(6))

Memouzahon

0O NouUl A WD -~
l

<
w
w
S
S
(o)
(0.¢)

M[6] = max(4 + 4, 6)

Memouzahon

0O NouUl A WD -~
l

<
w
w
S
S
(o)
(0.¢)
O

M[7] = max(3 + 6, 8)

Memouzahon

0O NouUl A WD -~
l

<
w
w
S
S
(o)
(0.¢)
O
O

M[8] = max(1l + 6, 9)

Memouzahon

0O NouUl A WD -~
I

0 1 2 3 4 5 6 7 8 9:%:1Q 11

3141 4 LouialS | 9

<
w

Running Time?

Sort jobs by finish times so that f; < f, < .. < f.
Compute p(1), p(2), ..., p(n)

for j=1ton
M[j] = empty
M[0] = O

M-Compute-Opt(j) {
if (M[j] is empty)
M[j] = max(w; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[}]
;

Iterative Solution

Bottom-up dynamic programming. Solve
subproblems in ascending order.

Sort jobs by finish time: f; < f, < ... < f,.

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {
M[O] = O
for j=11ton
MLj] = max(v; + M[p(j)l, M[j-1])

Compute the Solution
(Not Just Its Value)

@ Exercise: suppose you know the value OPT(})
for all |j.

@ How can you produce the set of intervals in
the optimal solution?

Dynamic Programming
"Recipe”

@ Recursive formulation of optimal solution in
terms of subproblems

@ Obvious implementation requires solving
exponentially many subproblems

@ Careful implementation to solve only
polynomially many different subproblems

