
Dynamic Programming
(Chapter 6)

Algorithm Design
Techniques

Greedy

Divide and Conquer

Dynamic Programming

Network Flows

Algorithm Design

Greedy Divide and
Conquer

Dynamic
Programming

Formulate problem ? ? ?

Design algorithm less work more work more work

Prove correctness more work less work less work

Analyze running time less work more work less work

Dynamic Programming
“Recipe”

Recursive formulation of optimal solution in
terms of subproblems

Obvious implementation requires solving
exponentially many subproblems

Careful implementation to solve only
polynomially many different subproblems

Interval Scheduling
(Yes, this is an old problem!)

Job j starts at sj and finishes at fj.
Two jobs compatible if they don't overlap.
Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

Interval Scheduling: Greedy Solution

Sort jobs by earliest finish time.

Take each job provided it's compatible with the ones
already taken.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

b, e, h

Weighted Interval Scheduling
Job j starts at sj, finishes at fj, and has weight vj.
Two jobs compatible if they don't overlap.
Goal: find maximum weight subset of mutually
compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

Greedy Solution?

Observation. Greedy algorithm can be
arbitrarily bad when intervals are weighted.

Time
0 1 2 3 4 5 6 7 8 9 10 11

weight = 999

weight = 1

Weighted Interval Scheduling
Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
p(j) = largest index i < j such that job i is compatible
with j.
E.g.: p(8) = 5, p(7) = 5, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Dynamic Programming:
Binary Choice

OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., j.

Case 1: OPT selects job j.
Case 2: OPT does not select job j.

If OPT selects job j...
can't use incompatible jobs { p(j) + 1, p(j) + 2, ...,
j - 1 }
must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(j)

Time
0 1 2 3 4 5 6 7 8 9 10 11

5

2

1

3

3

2

4

1

1
2
3
4
5
6
7
8

p(j) + 1, p(j) + 2, ..., j - 1

If OPT does not select job j...
must include optimal solution to problem
consisting of remaining compatible jobs 1,
2, ..., j-1

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Optimal Substructure

�

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise
⎧
⎨
⎩

OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., j

Case 1: OPT selects job j
Case 2: OPT does not select job j

 Recurrence for OPT(j)

Case 1 Case 2

Sort jobs by finish time: f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Straightforward Recursive Algorithm

Running time?

Worst Case Running Time

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

Worst-case is exponential
How can we do better?

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
 M[j] = empty
M[0] = 0

M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
}

Memoization
Memoization. Store results of each sub-problem in
an array; lookup as needed.

Memoization

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

M

M[8] = max(1 + M-Compute-Opt(5), M-Compute-Opt(7)

Memoization

M

M[5] = max(3 + M-Compute-Opt(2), M-Compute-Opt(4)

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Memoization

M

M[2] = max(2 + 0, M-Compute-Opt(1)

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Memoization

3M

M[1] = max(3 + 0, 0)

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Memoization

3 3M

M[2] = max(2 + 0, 3)

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Memoization

3 3M

M[5] = max(3 + 3, M-Compute-Opt(4)

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Memoization

3 3M

M[4] = max(1 + 3, M-Compute-Opt(3)

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Memoization

3 3 4M

M[3] = max(4 + 0, 3)

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Memoization

3 3 4 4M

M[4] = max(1 + 3, 4)

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Memoization

3 3 4 4 6M

M[5] = max(3 + 3, 4)

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Memoization

3 3 4 4 6M

M[8] = max(1 + 6, M-Compute-Opt(7)

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Memoization

3 3 4 4 6M

M[7] = max(3 + 6, M-Compute-Opt(6))

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Memoization

3 3 4 4 6 8M

M[6] = max(4 + 4, 6)

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Memoization

3 3 4 4 6 8 9M

M[7] = max(3 + 6, 8)

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Memoization

3 3 4 4 6 8 9 9M

M[8] = max(1 + 6, 9)

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Memoization

3 3 4 4 6 8 9 9M

Time
0 1 2 3 4 5 6 7 8 9 10 11

4

3

1

3

3

2

4

1

1
2
3
4
5
6
7
8

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
 M[j] = empty
M[0] = 0

M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 return M[j]
}

Running Time?

Iterative Solution
Bottom-up dynamic programming. Solve
subproblems in ascending order.

Sort jobs by finish time: f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
 M[0] = 0
 for j = 1 to n
 M[j] = max(vj + M[p(j)], M[j-1])
}

Compute the Solution
(Not Just Its Value)

Exercise: suppose you know the value OPT(j)
for all j.

How can you produce the set of intervals in
the optimal solution?

Dynamic Programming
“Recipe”

Recursive formulation of optimal solution in
terms of subproblems

Obvious implementation requires solving
exponentially many subproblems

Careful implementation to solve only
polynomially many different subproblems

