Dynamic Programming
(Chapter 6)



Algorithm Design
Techniques

@ Greedy
@ Divide and Conquer
@ Dynamic Programming

® Network Flows



Algorithm Design

Divide and | Dynamic
Greedy :
Conquer |Programming
Formulate problem 2 ? ?
Design algorithm less work | more work | more work
Prove correctness more work | less work | less work
Analyze running time | less work [more work | less work




Dynamic Programming
"Recipe”

@ Recursive formulation of optimal solution in
terms of subproblems

@ Obvious implementation requires solving
exponentially many subproblems

@ Careful implementation to solve only
polynomially many different subproblems



Interval Scheduling

(Yes, this is an old problem!)

@ Job j starts at s; and finishes at f;.

® Two jobs compatible if they don't overlap.
® Goal: find maximum subset of mutually compatible jobs.




Interval Scheduling: Greedy Solution

@ Sort jobs by earliest finish time.

@ Take each job provided it's compatible with the ones
already taken.
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Weighted Interval Scheduling

@ Job j starts at s, finishes at f, and has weight v..

® Two jobs compatible if they don't overlap.

@ Goal: find maximum weight subset of mutually
compatible jobs.




Greedy Solution?

@ Observation. Greedy algorithm can be
arbitrarily bad when intervals are weighted.
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Weighted Interval Scheduling

@ Label jobs by finishing fime: f; < f, <...<f,.

@ p(j) = largest index i < j such that job i is compatible
with J.

® E.qg.: p(8) =5, p(7) = 5, p(2) = 0.
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Dynamic Programming:
Binary Choice

® OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., |.
@ Case 1: OPT selects job .
@ Case 2: OPT does not select job .



If OPT selects job |...

@ can't use incompatible jobs { p(j) + 1, p(j) + 2, ...,
%1

® must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(j)
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If OPT does not select job |..

@ must include optimal solution to problem
consisting of remaining compatible jobs 1,
2ivis, -l

oo Nooul A WD




Optimal Substructure

OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., |

® Case 1: OPT selects job |

® Case 2: OPT does not select job |

Recurrence for OPT(})

if j=0
max { v, + OPT(p(j)), OPT(j—1)} otherwise

{ 0
OPT(j)=

Case 1l Case 2



Straightforward Recursive Algorithm

Sort jobs by finish time: f; < f, < .. < f.

Compute p(1), p(2), ..., p(n)

Compute-0Opt(}) 1
if (j =0)
return O
else
return max(v; + Compute-Opt(p(j)), Compute-Opt(j-1))

Running time?



Worst Case Running Time

p(1) = O, p(j) = j-2

Worst-case is exponenfial
How can we do better?



Memoization

Memoization. Store results of each sub-problem in
an array; lookup as needed.

Sort jobs by finish times so that f; < f, < ... < f.
Compute p(1), p(2), ..., p(n)

for j=1ton
M[j] = empty
M[O] = O

M-Compute-Opt(j) {
if (M[j] is empty)
M[j] = max(w; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]
}



Memouzahon
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M[8] = max(l + M-Compute-Opt(5), M-Compute-Opt(7)
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= max(3 + M-Compute-Opt(2), M-Compute-Opt(4)



Memouzahon
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M[2] = max(2 + O, M-Compute-Opt(1)



Memouzahon
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M[1] = max(3 + O, 0)
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M[2] = max(2 + O, 3)



Memouzahon
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M[5] = max(3 + 3, M-Compute-Opt(4)
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M[4] = max(l + 3, M-Compute-Opt(3)
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MI[3] = max(4 + O, 3)
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M[4] = max(1 + 3, 4)
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MI[5] = max(3 + 3, 4)
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M[8] = max(l + 6, M-Compute-Opt(7)
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M[7] = max(3 + 6, M-Compute-Opt(6))
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M[6] = max(4 + 4, 6)
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M[7] = max(3 + 6, 8)
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M[8] = max(1l + 6, 9)
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Running Time?

Sort jobs by finish times so that f; < f, < .. < f.
Compute p(1), p(2), ..., p(n)

for j=1ton
M[j] = empty
M[0] = O

M-Compute-Opt(j) {
if (M[j] is empty)
M[j] = max(w; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[}]
;



Iterative Solution

Bottom-up dynamic programming. Solve
subproblems in ascending order.

Sort jobs by finish time: f; < f, < ... < f,.

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {
M[O] = O
for j=11ton
MLj] = max(v; + M[p(j)l, M[j-1])



Compute the Solution
(Not Just Its Value)

@ Exercise: suppose you know the value OPT(})
for all |j.

@ How can you produce the set of intervals in
the optimal solution?



Dynamic Programming
"Recipe”

@ Recursive formulation of optimal solution in
terms of subproblems

@ Obvious implementation requires solving
exponentially many subproblems

@ Careful implementation to solve only
polynomially many different subproblems



